
Written Exam Economics summer 2021

Introduction to Programming and Numerical Analysis

From May 28th 10.00 AM to May 30th 10.00 AM

This exam question consists of 1 pages in total

Answers only in English.

A take-home exam paper cannot exceed 10 pages – and one page is defined as 2400 keystrokes

In addition to the Jupyter Notebook containing your exam answers, you must hand in your portfolio of

projects completed during the semester. Therefore, place your exam notebook, together with all

accompanying files, in a folder in your local git repository. Zip the whole repository into 1 file. Name the

file according to your group name (eg. ‘myGroup.zip’) and upload this file to Digital Exam.

Furthermore: Write which groups you have given peer feed back to (and for which projects) in the main

README.md file of your repository. Also write the names of all group members. (The main README is

located together with the 3 projects folders, the .gitignore and the LICENSE file.)

Be careful not to cheat at exams!

Exam cheating is for example if you:

• Copy other people's texts without making use of quotation marks and source referencing, so that it

may appear to be your own text
• Use the ideas or thoughts of others without making use of source referencing, so it may appear to be

your own idea or your thoughts
• Reuse parts of a written paper that you have previously submitted and for which you have received a

pass grade without making use of quotation marks or source references (self-plagiarism)
• Receive help from others in contrary to the rules laid down in part 4.12 of the Faculty of Social Science's

common part of the curriculum on cooperation/sparring

You can read more about the rules on exam cheating on your Study Site and in part 4.12 of the
Faculty of Social Science's common part of the curriculum.

Exam cheating is always sanctioned by a written warning and expulsion from the exam in question. In
most cases, the student will also be expelled from the University for one semester.

The logit model

In the following, we will consider the logit model for a binary discrete choice. That is, an agent is either

taking a specific action, or not taking it (Think buying a car, exit the labor market etc).

We imagine that the benefit of taking the action in question is described by a linear utility index . This

depends on two exogenous variables and and a random shock :

The econometrician does not observe the utility index; only the actual choice based on the index is

observed. We therefore associate the indicator variable with the choice taken by individual

Because we assume that the utility shocks follow a logistic distribution, we can formulate the probability

that an individual chooses to take the action by

We can now use the formulation of choice probabilities to estimate the parameters by maximum

likelihood. That is, we write up the log‑likelihood function

Maximizing with respect to yields the estimated parameters

The function DGP() will create the observations of :

Create your data using the following parameterization:

Question 1: Create a function that calculates the log‑likelihood of your data based on a . That is, the

function must take as arguments an array beta , y_obs and x_obs

Question 2: Make a 3d‑plot of the likelihood function where and are on the horizontal axes, and the

log‑likelihood is on the vertical axis. Visually confirm that it peaks at the data generating and .

Note: You can let = mp.beta[0] . Make sure that mp.beta[1] and mp.beta[2] are in the grids

over and .

Question 3: Estimate by maximum likelihood. You may use a gradient‑free approach or gradients if you

will.

Question 4: Based on your estimated parameters, simulate a choice y_sim pr individual in x_obs .
Create an output table that shows the following 4 statistics:

The number of times where:

y_obs = 1 and y_sim = 1

y_obs = 1 and y_sim = 0

y_obs = 0 and y_sim = 1

y_obs = 0 and y_sim = 0

Comment on the distribution of occurances across cells in the table.

Question 5: Test if your initial guess of will have an impact on the final estimate. Why do you think there

is/is not an impact?

Consumption saving with borrowing
We are now considering the consumption‑savings model with an extension: households may borrow

money in the first period. Additionally, there are 2 kinds of households: the first type will likely see a low

level of period 2 income, whereas the second type will likely see a high second period income.

A household lives for 2 periods and makes decisions on consumption and saving in each period.

Second period:

Solving the consumer problem in the second period is similar to the baseline case we have seen before.

The household gets utility from consuming and leaving a bequest (warm glow),

where

 is cash‑on‑hand

 is consumption

 is end‑of‑period assets

 is the risk aversion coefficient

 is the strength of the bequest motive

 is the degree of luxuriousness in the bequest motive

 ensures the household cannot die in debt

First period:

The household gets utility from immediate consumption. Household takes into account that next period

income is stochastic.

where

 is the discount factor

 is the expectation operator conditional on information in period 1

 is income in period 2

 is the level of income risk

 is the interest rate

 ensures the household cannot borrow more than it will be able to repay in next

period when is received.

The 2 types of households are defined by their different :

Type 1:

Type 2:

Question 1 Solve the model for each type of household. Plot the value functions and in

one graph for each household type. Comment on the differences.

Question 2 From the model solution, obtain the optimal consumption functions and . Plot

these in one graph for each type of household. Comment on the observed differences between household

types.

Question 3 Simulate simN households of each type based on the distribution of below. You can use

the same distribution for both household types. What is the fraction of households who borrow in period

1, , in each group?

Division by Newton's method
One can obtain the numerical ratio of 2 real numbers using only multiplication and harnessing Newton's

method! This may be helpful when the numbers are very large because division methods of large numbers

is costly.

Our objective is to find the numerical

given the two numbers .

First note that if we can find the numeric value

then we can readily obtain by

Therefore, our objective comes down to finding the value of and the rest is trivial.

Second, note that Newton's method can be used to find the root of a function by the iteration

steps

This means that if we can define some function such that

then the root provides us with the numerical value that we want.

Third, note that the function

has the property , which means that is a good candidate for .

Question 1: By applying the function in Newton's method, we can avoid any use of division during

the run of the algorithm.

Derive the expression . Do you see why there is no division involved?

Question 2: Implement the algorithm below in code and test it.

Division algorithm

1. Choose a tolerance level . Provide an initial guess . Set .

2. Calculate .

3. If then stop and return .

4. Calculate a new candidate root .

5. Set and return to step 2.

Important: if the starting point is too far off target, then you might not get convergence.

You can test your implementation with the example:

 = 37.581

 = 5.9

 = 0.2

In [1]: import numpy as np 
from types import SimpleNamespace 
%load_ext autoreload 
%autoreload 2 
 
%matplotlib inline 
import matplotlib.pyplot as plt 
plt.style.use('seabornwhitegrid') 
 
# Import additional libraries:  

y∗
i

x1 x2 ϵ

y∗
i =β0 + β1x

1
i + β2x

2
i + ϵi

=xiβ + ϵi

ϵ ∼ logistic(0, 1)

yi i

yi = 1 ⇔ y∗ > 0 ⇔ Choice is taken

yi = 0 ⇔ y∗ ≤ 0 ⇔ Choice is not taken

P(yi = 1|xi;β) =

P(yi = 0|xi;β) = 1 − P(yi = 1|xi;β)

exp(xiβ)

1 + exp(xiβ)

β

LL(β) =
N

∑
i=1

yi log(P(yi = 1|xi;β)) + (1 − yi) log(1 − P(yi = 1|xi;β)) (1)

LL(β) β β̂

β̂ = arg max
β

LL(β)

N (yi,xi)

In [2]: def DGP(mp): 
    ''' The data generating process behind binary choice model 
     
    Args: 
        mp (SimpleNamespace): object containing parameters for data generation 
     
    Returns: 
        y_obs (ndarray): indicator for binary choices made by individuals 
        x_obs (ndarray): independent variables  
     
    ''' 
 
    # a. Exogenous variables 
    x0 = np.tile(1.0, mp.N) 
    x1 = np.random.normal(**mp.x1_distr) 
    x2 = np.random.normal(**mp.x2_distr) 
    x_obs = np.vstack((x0, x1, x2)).T 
 
    # b. Probabilities of action choice  
    y_prb = np.exp(x_obs @ mp.beta) / (1 + np.exp(x_obs @ mp.beta)) 
 
    # c. Draw binary choices from the binomial distribution  
    y_obs = np.random.binomial(1, y_prb) 
    return y_obs, x_obs 

In [3]: # Parameters 
mp = SimpleNamespace() 
mp.beta = np.array([0.15, 0.1, 0.2]) 
mp.N = 100_000 
mp.x1_distr = {'loc': 4, 'scale': 3, 'size': mp.N} 
mp.x2_distr = {'loc': 1, 'scale': 0.5, 'size': mp.N} 
 
# Create data 
np.random.seed(2021) 
y_obs, x_obs = DGP(mp) 

β

In [ ]: # Example 
def log_likelihood(beta, y_obs, x_obs): 
    pass 

β1 β2

β1 β2

β0

β1 β2

β

β

v2(m2) = max
c2

+ ν

s.t.

a2 = m2 − c2

a2 ≥ 0

c
1−ρ

2

1 − ρ

(a2 + κ)1−ρ

1 − ρ

mt

ct
at
ρ > 1

ν > 0

κ > 0

a2 ≥ 0

v1(m1) = max
c1

+ βE1 [v2(m2)]

s.t.

a1 = m1 − c1

m2 = (1 + r)a1 + y2

y2 = { 1 − Δ with prob. Plow

1 + Δ with prob. Phigh

a1 > −

c
1−ρ

1

1 − ρ

1 − Δ

1 + r

β > 0

E1

y2

Δ ∈ (0, 1)

r

> c1 − m1
1−Δ

1+r

y2

(Plow,Phigh)

Plow = 0.9

Phigh = 0.1

Plow = 0.1

Phigh = 0.9

In [82]: # Parameters 
rho = 3 
kappa = 0.5 
nu = 0.1 
r = 0.04 
beta = 0.95 
Delta = 0.5 
# Add income prb parameters 
 
# Tip: for each household type, create a SimpleNamespace  
# or dictionary for storing all the parameters  

v1(m1) v2(m2)

c∗
1
(m1) c∗

2
(m2)

m1

c1 > m1

In [ ]: np.random.seed(2021) 
simN = 1000 
# No one gets negative m in first period 
sim_m1 = np.fmax(np.random.normal(1, 1, size = simN), 0)  

x

x =
n

d

n, d

~
d

~
d =

1

d

x

x = n ×
~
d

~
d

x∗ f(x)

xk+1 = xk − ≡ N (xk)
f(xk)

f ′(xk)

f(x)

f(x) = 0 ⇔ x =
1

d

x∗

g(x)

g(x) = − d
1

x

g(
~
d) = 0 g(x) f(x)

g(x)

g(x)

g′(x)

ϵ > 0
~
d 0 k = 0

g(
~
d k)

|g(
~
d k)| < ϵ x = n ×

~
d k

~
d k+1 = N (

~
d k)

k = k + 1

~
d 0

n

d
~
d 0

In [ ]: def newton_division(n, d, d0, max_iter=500, tol=1e8): 
    pass 

